\(\int \frac {A+C \sec ^2(c+d x)}{(b \sec (c+d x))^{7/2}} \, dx\) [22]

   Optimal result
   Rubi [A] (verified)
   Mathematica [A] (verified)
   Maple [C] (verified)
   Fricas [C] (verification not implemented)
   Sympy [F]
   Maxima [F]
   Giac [F]
   Mupad [F(-1)]

Optimal result

Integrand size = 25, antiderivative size = 112 \[ \int \frac {A+C \sec ^2(c+d x)}{(b \sec (c+d x))^{7/2}} \, dx=\frac {2 (5 A+7 C) \sqrt {\cos (c+d x)} \operatorname {EllipticF}\left (\frac {1}{2} (c+d x),2\right ) \sqrt {b \sec (c+d x)}}{21 b^4 d}+\frac {2 (5 A+7 C) \sin (c+d x)}{21 b^3 d \sqrt {b \sec (c+d x)}}+\frac {2 A \tan (c+d x)}{7 d (b \sec (c+d x))^{7/2}} \]

[Out]

2/21*(5*A+7*C)*sin(d*x+c)/b^3/d/(b*sec(d*x+c))^(1/2)+2/21*(5*A+7*C)*(cos(1/2*d*x+1/2*c)^2)^(1/2)/cos(1/2*d*x+1
/2*c)*EllipticF(sin(1/2*d*x+1/2*c),2^(1/2))*cos(d*x+c)^(1/2)*(b*sec(d*x+c))^(1/2)/b^4/d+2/7*A*tan(d*x+c)/d/(b*
sec(d*x+c))^(7/2)

Rubi [A] (verified)

Time = 0.09 (sec) , antiderivative size = 112, normalized size of antiderivative = 1.00, number of steps used = 4, number of rules used = 4, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.160, Rules used = {4130, 3854, 3856, 2720} \[ \int \frac {A+C \sec ^2(c+d x)}{(b \sec (c+d x))^{7/2}} \, dx=\frac {2 (5 A+7 C) \sqrt {\cos (c+d x)} \operatorname {EllipticF}\left (\frac {1}{2} (c+d x),2\right ) \sqrt {b \sec (c+d x)}}{21 b^4 d}+\frac {2 (5 A+7 C) \sin (c+d x)}{21 b^3 d \sqrt {b \sec (c+d x)}}+\frac {2 A \tan (c+d x)}{7 d (b \sec (c+d x))^{7/2}} \]

[In]

Int[(A + C*Sec[c + d*x]^2)/(b*Sec[c + d*x])^(7/2),x]

[Out]

(2*(5*A + 7*C)*Sqrt[Cos[c + d*x]]*EllipticF[(c + d*x)/2, 2]*Sqrt[b*Sec[c + d*x]])/(21*b^4*d) + (2*(5*A + 7*C)*
Sin[c + d*x])/(21*b^3*d*Sqrt[b*Sec[c + d*x]]) + (2*A*Tan[c + d*x])/(7*d*(b*Sec[c + d*x])^(7/2))

Rule 2720

Int[1/Sqrt[sin[(c_.) + (d_.)*(x_)]], x_Symbol] :> Simp[(2/d)*EllipticF[(1/2)*(c - Pi/2 + d*x), 2], x] /; FreeQ
[{c, d}, x]

Rule 3854

Int[(csc[(c_.) + (d_.)*(x_)]*(b_.))^(n_), x_Symbol] :> Simp[Cos[c + d*x]*((b*Csc[c + d*x])^(n + 1)/(b*d*n)), x
] + Dist[(n + 1)/(b^2*n), Int[(b*Csc[c + d*x])^(n + 2), x], x] /; FreeQ[{b, c, d}, x] && LtQ[n, -1] && Integer
Q[2*n]

Rule 3856

Int[(csc[(c_.) + (d_.)*(x_)]*(b_.))^(n_), x_Symbol] :> Dist[(b*Csc[c + d*x])^n*Sin[c + d*x]^n, Int[1/Sin[c + d
*x]^n, x], x] /; FreeQ[{b, c, d}, x] && EqQ[n^2, 1/4]

Rule 4130

Int[(csc[(e_.) + (f_.)*(x_)]*(b_.))^(m_.)*(csc[(e_.) + (f_.)*(x_)]^2*(C_.) + (A_)), x_Symbol] :> Simp[A*Cot[e
+ f*x]*((b*Csc[e + f*x])^m/(f*m)), x] + Dist[(C*m + A*(m + 1))/(b^2*m), Int[(b*Csc[e + f*x])^(m + 2), x], x] /
; FreeQ[{b, e, f, A, C}, x] && NeQ[C*m + A*(m + 1), 0] && LeQ[m, -1]

Rubi steps \begin{align*} \text {integral}& = \frac {2 A \tan (c+d x)}{7 d (b \sec (c+d x))^{7/2}}+\frac {(5 A+7 C) \int \frac {1}{(b \sec (c+d x))^{3/2}} \, dx}{7 b^2} \\ & = \frac {2 (5 A+7 C) \sin (c+d x)}{21 b^3 d \sqrt {b \sec (c+d x)}}+\frac {2 A \tan (c+d x)}{7 d (b \sec (c+d x))^{7/2}}+\frac {(5 A+7 C) \int \sqrt {b \sec (c+d x)} \, dx}{21 b^4} \\ & = \frac {2 (5 A+7 C) \sin (c+d x)}{21 b^3 d \sqrt {b \sec (c+d x)}}+\frac {2 A \tan (c+d x)}{7 d (b \sec (c+d x))^{7/2}}+\frac {\left ((5 A+7 C) \sqrt {\cos (c+d x)} \sqrt {b \sec (c+d x)}\right ) \int \frac {1}{\sqrt {\cos (c+d x)}} \, dx}{21 b^4} \\ & = \frac {2 (5 A+7 C) \sqrt {\cos (c+d x)} \operatorname {EllipticF}\left (\frac {1}{2} (c+d x),2\right ) \sqrt {b \sec (c+d x)}}{21 b^4 d}+\frac {2 (5 A+7 C) \sin (c+d x)}{21 b^3 d \sqrt {b \sec (c+d x)}}+\frac {2 A \tan (c+d x)}{7 d (b \sec (c+d x))^{7/2}} \\ \end{align*}

Mathematica [A] (verified)

Time = 0.92 (sec) , antiderivative size = 79, normalized size of antiderivative = 0.71 \[ \int \frac {A+C \sec ^2(c+d x)}{(b \sec (c+d x))^{7/2}} \, dx=\frac {\frac {4 (5 A+7 C) \operatorname {EllipticF}\left (\frac {1}{2} (c+d x),2\right )}{\sqrt {\cos (c+d x)}}+2 (13 A+14 C+3 A \cos (2 (c+d x))) \sin (c+d x)}{42 b^3 d \sqrt {b \sec (c+d x)}} \]

[In]

Integrate[(A + C*Sec[c + d*x]^2)/(b*Sec[c + d*x])^(7/2),x]

[Out]

((4*(5*A + 7*C)*EllipticF[(c + d*x)/2, 2])/Sqrt[Cos[c + d*x]] + 2*(13*A + 14*C + 3*A*Cos[2*(c + d*x)])*Sin[c +
 d*x])/(42*b^3*d*Sqrt[b*Sec[c + d*x]])

Maple [C] (verified)

Result contains complex when optimal does not.

Time = 4.66 (sec) , antiderivative size = 291, normalized size of antiderivative = 2.60

method result size
default \(\frac {\frac {10 i A \sqrt {\frac {\cos \left (d x +c \right )}{\cos \left (d x +c \right )+1}}\, \sqrt {\frac {1}{\cos \left (d x +c \right )+1}}\, \operatorname {EllipticF}\left (i \left (\cot \left (d x +c \right )-\csc \left (d x +c \right )\right ), i\right )}{21}+\frac {2 i C \sqrt {\frac {\cos \left (d x +c \right )}{\cos \left (d x +c \right )+1}}\, \sqrt {\frac {1}{\cos \left (d x +c \right )+1}}\, \operatorname {EllipticF}\left (i \left (\cot \left (d x +c \right )-\csc \left (d x +c \right )\right ), i\right )}{3}+\frac {10 i A \sqrt {\frac {1}{\cos \left (d x +c \right )+1}}\, \sqrt {\frac {\cos \left (d x +c \right )}{\cos \left (d x +c \right )+1}}\, \operatorname {EllipticF}\left (i \left (\cot \left (d x +c \right )-\csc \left (d x +c \right )\right ), i\right ) \sec \left (d x +c \right )}{21}+\frac {2 A \cos \left (d x +c \right )^{2} \sin \left (d x +c \right )}{7}+\frac {2 i C \sqrt {\frac {1}{\cos \left (d x +c \right )+1}}\, \sqrt {\frac {\cos \left (d x +c \right )}{\cos \left (d x +c \right )+1}}\, \operatorname {EllipticF}\left (i \left (\cot \left (d x +c \right )-\csc \left (d x +c \right )\right ), i\right ) \sec \left (d x +c \right )}{3}+\frac {10 A \sin \left (d x +c \right )}{21}+\frac {2 C \sin \left (d x +c \right )}{3}}{b^{3} d \sqrt {b \sec \left (d x +c \right )}}\) \(291\)
parts \(-\frac {2 A \left (5 i \sqrt {\frac {1}{\cos \left (d x +c \right )+1}}\, \sqrt {\frac {\cos \left (d x +c \right )}{\cos \left (d x +c \right )+1}}\, \operatorname {EllipticF}\left (i \left (-\cot \left (d x +c \right )+\csc \left (d x +c \right )\right ), i\right )+5 i \sqrt {\frac {1}{\cos \left (d x +c \right )+1}}\, \sqrt {\frac {\cos \left (d x +c \right )}{\cos \left (d x +c \right )+1}}\, \operatorname {EllipticF}\left (i \left (-\cot \left (d x +c \right )+\csc \left (d x +c \right )\right ), i\right ) \sec \left (d x +c \right )-3 \cos \left (d x +c \right )^{2} \sin \left (d x +c \right )-5 \sin \left (d x +c \right )\right )}{21 d \sqrt {b \sec \left (d x +c \right )}\, b^{3}}-\frac {2 C \left (i \sqrt {\frac {1}{\cos \left (d x +c \right )+1}}\, \sqrt {\frac {\cos \left (d x +c \right )}{\cos \left (d x +c \right )+1}}\, \operatorname {EllipticF}\left (i \left (-\cot \left (d x +c \right )+\csc \left (d x +c \right )\right ), i\right )+i \sqrt {\frac {1}{\cos \left (d x +c \right )+1}}\, \sqrt {\frac {\cos \left (d x +c \right )}{\cos \left (d x +c \right )+1}}\, \operatorname {EllipticF}\left (i \left (-\cot \left (d x +c \right )+\csc \left (d x +c \right )\right ), i\right ) \sec \left (d x +c \right )-\sin \left (d x +c \right )\right )}{3 d \sqrt {b \sec \left (d x +c \right )}\, b^{3}}\) \(306\)

[In]

int((A+C*sec(d*x+c)^2)/(b*sec(d*x+c))^(7/2),x,method=_RETURNVERBOSE)

[Out]

2/21/b^3/d/(b*sec(d*x+c))^(1/2)*(5*I*A*(1/(cos(d*x+c)+1))^(1/2)*(cos(d*x+c)/(cos(d*x+c)+1))^(1/2)*EllipticF(I*
(cot(d*x+c)-csc(d*x+c)),I)+7*I*C*(1/(cos(d*x+c)+1))^(1/2)*(cos(d*x+c)/(cos(d*x+c)+1))^(1/2)*EllipticF(I*(cot(d
*x+c)-csc(d*x+c)),I)+5*I*A*(1/(cos(d*x+c)+1))^(1/2)*(cos(d*x+c)/(cos(d*x+c)+1))^(1/2)*EllipticF(I*(cot(d*x+c)-
csc(d*x+c)),I)*sec(d*x+c)+3*A*cos(d*x+c)^2*sin(d*x+c)+7*I*C*(1/(cos(d*x+c)+1))^(1/2)*(cos(d*x+c)/(cos(d*x+c)+1
))^(1/2)*EllipticF(I*(cot(d*x+c)-csc(d*x+c)),I)*sec(d*x+c)+5*A*sin(d*x+c)+7*C*sin(d*x+c))

Fricas [C] (verification not implemented)

Result contains higher order function than in optimal. Order 9 vs. order 4.

Time = 0.09 (sec) , antiderivative size = 119, normalized size of antiderivative = 1.06 \[ \int \frac {A+C \sec ^2(c+d x)}{(b \sec (c+d x))^{7/2}} \, dx=\frac {\sqrt {2} {\left (-5 i \, A - 7 i \, C\right )} \sqrt {b} {\rm weierstrassPInverse}\left (-4, 0, \cos \left (d x + c\right ) + i \, \sin \left (d x + c\right )\right ) + \sqrt {2} {\left (5 i \, A + 7 i \, C\right )} \sqrt {b} {\rm weierstrassPInverse}\left (-4, 0, \cos \left (d x + c\right ) - i \, \sin \left (d x + c\right )\right ) + 2 \, {\left (3 \, A \cos \left (d x + c\right )^{3} + {\left (5 \, A + 7 \, C\right )} \cos \left (d x + c\right )\right )} \sqrt {\frac {b}{\cos \left (d x + c\right )}} \sin \left (d x + c\right )}{21 \, b^{4} d} \]

[In]

integrate((A+C*sec(d*x+c)^2)/(b*sec(d*x+c))^(7/2),x, algorithm="fricas")

[Out]

1/21*(sqrt(2)*(-5*I*A - 7*I*C)*sqrt(b)*weierstrassPInverse(-4, 0, cos(d*x + c) + I*sin(d*x + c)) + sqrt(2)*(5*
I*A + 7*I*C)*sqrt(b)*weierstrassPInverse(-4, 0, cos(d*x + c) - I*sin(d*x + c)) + 2*(3*A*cos(d*x + c)^3 + (5*A
+ 7*C)*cos(d*x + c))*sqrt(b/cos(d*x + c))*sin(d*x + c))/(b^4*d)

Sympy [F]

\[ \int \frac {A+C \sec ^2(c+d x)}{(b \sec (c+d x))^{7/2}} \, dx=\int \frac {A + C \sec ^{2}{\left (c + d x \right )}}{\left (b \sec {\left (c + d x \right )}\right )^{\frac {7}{2}}}\, dx \]

[In]

integrate((A+C*sec(d*x+c)**2)/(b*sec(d*x+c))**(7/2),x)

[Out]

Integral((A + C*sec(c + d*x)**2)/(b*sec(c + d*x))**(7/2), x)

Maxima [F]

\[ \int \frac {A+C \sec ^2(c+d x)}{(b \sec (c+d x))^{7/2}} \, dx=\int { \frac {C \sec \left (d x + c\right )^{2} + A}{\left (b \sec \left (d x + c\right )\right )^{\frac {7}{2}}} \,d x } \]

[In]

integrate((A+C*sec(d*x+c)^2)/(b*sec(d*x+c))^(7/2),x, algorithm="maxima")

[Out]

integrate((C*sec(d*x + c)^2 + A)/(b*sec(d*x + c))^(7/2), x)

Giac [F]

\[ \int \frac {A+C \sec ^2(c+d x)}{(b \sec (c+d x))^{7/2}} \, dx=\int { \frac {C \sec \left (d x + c\right )^{2} + A}{\left (b \sec \left (d x + c\right )\right )^{\frac {7}{2}}} \,d x } \]

[In]

integrate((A+C*sec(d*x+c)^2)/(b*sec(d*x+c))^(7/2),x, algorithm="giac")

[Out]

integrate((C*sec(d*x + c)^2 + A)/(b*sec(d*x + c))^(7/2), x)

Mupad [F(-1)]

Timed out. \[ \int \frac {A+C \sec ^2(c+d x)}{(b \sec (c+d x))^{7/2}} \, dx=\int \frac {A+\frac {C}{{\cos \left (c+d\,x\right )}^2}}{{\left (\frac {b}{\cos \left (c+d\,x\right )}\right )}^{7/2}} \,d x \]

[In]

int((A + C/cos(c + d*x)^2)/(b/cos(c + d*x))^(7/2),x)

[Out]

int((A + C/cos(c + d*x)^2)/(b/cos(c + d*x))^(7/2), x)